DAMA国际数据管理专业人士CDMP认证&DAMA中国数据治理工程师CDGA认证
一、 培训背景
中培伟业以《DAMA数据管理知识体系指南》原书第二版为基础,结合DAMA国际数据管理专业人士CDMP及DAMA中国数据治理工程师CDGA的考试特点及知识点,立足企业数据治理现状,解决企业的人才培养和数据治理问题,结合多位数据治理领域权威专家研究成果,特开设此课程。
二、 DAMA国际CDMP认证考试
国际数据管理协会认证CDMP
数据管理专业人士认证 (CDMP) 证书授予那些具备以下综合条件资格的人员,这些条件包括教育程度、技能经验和基于测试的专业知识考试。证书分为基础级Associate、专家级Practitioner、大师级Master和院士级Fellow。为了维护认证状态并持续使用证书,需缴纳年度认证费用,加3年的继续教育和专业活动要求。
数据管理专业人士认证 CDMP:只要有 ICCP 批准的代理人核查物理身份,并监考考试过程,ICCP 的考试可以在世界上任何地方举行。
CDMP考试认证分为四个等级,分别是Associate(基础级)、Practitioner(专家级)、Master(大师级)和Fellow(院士级)。四个等级将分别从教育学历、工作经验、专业知识以及对DAMA的贡献等角度进行认证考核,具体如下:
基础级(A) Associate |
专家级(P) Practitioner |
大师级(M) Master |
院士级(F) Fellow |
|
职业经验 | 6个月>2年 | 2年-10年 | 至少10年 | 超过25年 |
考试 | DM Fundamentals 基础级 | 3 DM Fundamentals + 2 specialist 基础级+2门选修 (7门中任选2门) |
3 DM Fundamentals + 2 specialist 基础级+2门选修 (7门中任选2门) |
• 全球公认的尊重的思想者、引领者。 • 对数据管理领域有重大的、持续性的贡献 • 为CDMP和 DMBOK做出巨大贡献,通过提名 • 通过大师级成员的审查和认可 |
合格标准 |
60% | 70% | 80% | |
认证路径 | 注册 & 考试 | 注册 & 考试 | 注册 & 考试 通过案例经验提交经验证据 | 通过大师级成员的审查和认可 |
考试信息:
1. 机考
2. 考试题目数量:100道选择题,100分
3. 考试时间:90+20 Min(英语非第一语言区域可获得20分钟额外时间)
4. 考试语言:英语
5. 监考形式:ProctorU远程监考
三、 DAMA中国CDGA认证考试
DAMA中国以国际数据管理协会(简称“DAMA国际”)DAMA数据管理知识体系为基础,结合国内实际需求,对DAMA国际数据管理专业人员认证(CDMP)的考试语言、考试形式、考试内容、证书类型等进行了适当本地化重构。重构后认证考试分为数据治理工程师(Certified Data Governance Associate,CDGA)和数据治理专家(Certified Data Governance Professional, CDGP),DAMA中国承担认证考试命题工作,并定期组织中文考试,对考试通过者由DAMA中国颁发认证证书。证书有效期为三年,获得CDGA认证才能申请CDGP认证考试。
报考条件
CDGA:数据管理从业人员、在校大学生、专科及以上学历获得者。
CDGP:需通过CDGA考试并持有有效CDGA证书,且满5年相关专业工作经验者。
注意事项
1.考生需携带本人身份证原件,核对报名预留考生信息无误后方可参加考试;
2.考试为笔试,CDGA题型为单项选择题,CDGP题型为单项选择题、多项选择题和论述题。请自带签字笔在答题卡上圈选或涂满选择题答案;
3.考试为闭卷考试,开考前手机等通讯工具需全部上交。开考信号发出后方可开始答题,CDGA考试答题时间为100分钟,CDGP考试答题时间为130分钟,考试全程须保持安静,不可互相交流,不可将试卷、答题卡、草稿纸带出考场。考试期间有问题,可举手询问监考员,考试结束信号发出后,须立即停止答题;
4.CDGA考试和CDGP考试满分均为100分,60分及格,成绩合格者由DAMA中国颁发证书;
5.考生需到指定考场进行考试。
四、 培训收益
通过学习本课程,您将获得如下收益:
l 掌握数据管理知识体系的整体框架及各领域知识内容;
l 对关键数据管理各领域中的重点、难点及实践获得理解;
l 系统化、体系化、结构化的数据管理问题辨析、思考和分析能力,及数据管理解决方案设计、执行能力。
l 学员可以自行选择中国DAMA的CDGA认证考试或国际DAMA的CDMP认证考试。
五、 培训对象
Ø 企业CIO、CDO 等信息化相关的高层领导;
Ø 数据管理或数据服务团队负责人、核心团队成员;
Ø 企业数据管理专家/专家委员会专员;
Ø 数据管理团队及专兼职人员;
Ø 业务部门信息化领导/经理/专员;
Ø IT 部门总监/经理;
Ø IT 项目管理办公室(PMO)总监/经理/数据管理专员/技术经理。
六、 培训特色
1. 理论与实践相结合、案例分析与理论穿插进行;
2. 专家精彩内容解析、学员专题讨论、分组研究;
3. 通过全面知识理解、专题技能掌握和安全实践增强的授课方式。
七、 课程大纲
章节 | 模块 | 培训内容 |
第一章 数据管理 |
掌握数据、数据与信息、数据作为组织资产、数据管理原则、数据管理挑战、数据战略基本概念;掌握数据管理框架基本内容包括:战略模型、阿姆斯特丹模型、DAMA-DMBOK框架、DMBOK金字塔。 | 1.1 简介 1.2 什么是数据? 1.3 数据与信息 1.4 数据作为组织资产 1.5 数据管理原则 1.6 数据管理面临的挑战 1.7 数据战略 1.8 数据管理框架 1.9 DAMA与DMBOK 1.10 总结 |
第二章 数据道德 |
了解数据道德、数据隐私背后的原则、数字化环境下的道德、不道德的数据处理和风险实践、建立数据道德文化、数据道德与数据治理。 | 2.1 简介 2.2 业务驱动因素 2.3 什么是数据道德 2.4 数据隐私背后的原则 2.5 数字化环境下的道德 2.6 不道德的数据处理和风险实践 2.7 建立数据道德文化 2.8 数据道德与数据治理 2.9 总结 |
第三章 数据治理 |
掌握数据治理指导原则、数据治理关键驱动因素、数据治理的主要组成内容、数据治理关键指标、数据治理关键输入和输出、数据治理的主要工具、数据治理应用中的策略、数据治理评价理论、数据治理最佳实践 | 3.1 简介 3.2 数据治理基本活动 3.3 数据治理工具和技术 3.4 数据治理实施指南 3.5 数据治理关键指标 3.6 数据治理最佳实践 3.7 总结 |
第四章 数据架构 |
掌握数据架构指导原则、数据架构关键驱动因素、数据架构的主要组成内容、数据架构关键指标、数据架构关键输入和输出、数据架构的主要工具、数据架构应用中的策略、数据架构评价理论、数据架构最佳实践。 | 4.1 简介 4.2 数据架构基本活动 4.3 数据架构工具和技术 4.4 数据架构实施指南 4.5 数据架构关键指标 4.6 数据架构最佳实践 4.7 总结 |
第五章 数据建模与设计 |
掌握数据模型指导原则、数据模型关键驱动因素、数据模型的主要组成内容、数据模型关键指标、数据模型关键输入和输出、数据建模的主要工具、数据模型应用中的策略、数据建模评价理论、数据建模最佳实践。 | 5.1 简介 5.2 数据模型基本活动 5.3 数据建模工具和技术 5.4 数据建模实施指南 5.5 数据模型关键指标 5.6 数据建模最佳实践 5.7 总结 |
第六章 数据存储与操作 |
掌握数据库设计指导原则、数据存储与操作驱动因素、数据库的主要组成内容、数据库管理关键指标、数据库管理关键输入和输出、数据库管理的主要工具、数据库设计应用中的策略、数据存储与操作评价理论、数据库管理最佳实践。 | 6.1 简介 6.2 数据库管理基本活动 6.3 数据库工具和技术 6.4 数据库实施指南 6.5 数据库管理关键指标 6.6 数据库管理最佳实践 6.7 总结 |
第七章 数据安全 |
掌握数据安全指导原则、数据安全关键驱动因素、数据安全的主要组成内容、数据安全关键指标、数据安全关键输入和输出、数据安全的主要工具、数据安全技术、数据安全实施指南、数据治理最佳实践。 | 7.1 简介 7.2 数据安全基本活动 7.3 数据安全工具和技术 7.4 数据安全实施指南 7.5 数据安全关键指标 7.6 数据安全管理评价 7.7 数据安全最佳实践 7.8 总结 |
第八章 数据集成与互操作性 |
掌握数据集成与互操作性指导原则、数据集成与互操作性关键驱动因素、数据集成与互操作性的主要组成内容、数据集成与互操作性关键指标、数据集成与互操作性关键输入和输出、数据集成与互操作性的主要工具、数据集成与互操作性实施指南、数据集成与互操作性评价理论、数据集成与互操作性最佳实践。 | 8.1 简介 8.2 数据集成与互操作性基本活动 8.3 数据集成与互操作性工具和技术 8.4 数据集成与互操作性实施指南 8.5 数据集成与互操作性关键指标 8.6 数据集成与互操作性最佳实践 8.7 总结 |
第九章 文档和内容管理 |
掌握内容管理指导原则、内容管理关键驱动因素、内容管理的主要组成内容、内容管理关键指标、内容管理关键输入和输出、内容管理的主要工具、内容管理实施指南、内容管理评价理论、内容管理最佳实践。 | 9.1 简介 9.2 文档和内容管理基本活动 9.3 内容管理工具和技术 9.4 内容管理实施指南 9.5 内容管理关键指标 9.6 内容管理最佳实践 9.7 总结 |
第十章 参考数据和主数据 |
掌握参考数据和主数据指导原则、参考数据和主数据关键驱动因素、参考数据和主数据主要组成内容、参考数据和主数据关键指标、参考数据和主数据关键输入和输出、参考数据和主数据的主要工具、参考数据和主数据实施指南、参考数据和主数据评价理论、参考数据和主数据最佳实践。 | 10.1 简介 10.2 参考数据和主数据基本活动 10.3 参考数据和主数据工具和技术 10.4 参考数据和主数据实施指南 10.5 参考数据和主数据关键指标 10.6 参考数据和主数据最佳实践 10.7 总结 |
第十一章 数据仓库与商务智能 | 掌握数据仓库与商务智能指导原则、数据仓库与商务智能关键驱动因素、数据仓库与商务智能的主要组成内容、数据仓库与商务智能关键指标、数据仓库与商务智能关键输入和输出、数据仓库与商务智能的主要工具、数据仓库与商务智能应用中的策略、数据仓库与商务智能评价理论、数据仓库与商务最佳实践。 | 11.1 简介 11.2 数据仓库与商务智能基本活动 11.3 数据仓库与商务智能工具和技术 11.4 数据仓库与商务智能实施指南 11.5 数据仓库与商务智能关键指标 11.6 数据仓库与商务智能最佳实践 11.7 总结 |
第十二章 元数据管理 | 掌握元数据指导原则、元数据关键驱动因素、元数据的主要组成内容、元数据关键指标、元数据关键输入和输出、元数据的主要工具、元数据应用中的策略、元数据评价理论、元数据最佳实践。 | 12.1 简介 12.2 元数据管理基本活动 12.3 元数据管理工具和技术 12.4 元数据实施指南 12.5 元数据管理关键指标 12.6 元数据最佳实践 12.7 总结 |
第十三章 数据质量 | 掌握数据质量指导原则、数据质量关键驱动因素、数据质量的主要组成内容、数据质量关键指标、数据质量关键输入和输出、数据质量的主要工具、数据质量应用中的策略、数据质量评价理论、数据质量最佳实践。 | 13.1 简介 13.2 数据质量基本活动 13.3 数据质量工具和技术 13.4 数据质量实施指南 13.5 数据质量关键指标 13.6 数据质量最佳实践 13.7 总结 |
第十四章 大数据与数据科学 | 掌握大数据指导原则、大数据与数据科学关键驱动因素、大数据与数据科学的主要组成内容、大数据关键指标、大数据关键输入和输出、大数据的主要工具、大数据与数据科学应用中的策略、大数据评价理论、大数据与数据科学最佳实践。 | 14.1 简介 14.2 大数据与数据科学基本活动 14.3 大数据与数据科学工具和技术 14.4 大数据与数据科学实施指南 14.5 大数据与数据科学关键指标 14.6 大数据与数据科学最佳实践 14.7 总结 |
第十五章 数据管理能力成熟度 | 掌握数据管理能力指导原则、数据管理能力成熟度评估关键驱动因素、数据管理能力成熟度的主要组成内容、数据管理能力成熟度关键指标、数据管理能力成熟度关键输入和输出、数据管理能力成熟度的主要工具、数据管理能力成熟度应用策略、数据管理能力成熟度评价理论、数据管理能力成熟度最佳实践。 | 15.1 简介 15.2 数据管理能力成熟度基本活动 15.3 数据管理能力成熟度工具和技术 15.4 数据管理能力成熟度实施指南 15.5 数据管理能力成熟度关键指标 15.6 数据管理能力成熟度最佳实践 15.7 总结 |
第十六章 数据管理组织及角色 | 掌握数据管理组织模式、数据管理成功关键要素、建立数据管理组织、数据管理组织与其他组织间关系、数据管理组织中的角色、数据管理组织最佳实践。 | 16.1 简介 16.2 数据管理组织模式 16.3 数据管理成功关键要素 16.4 建立数据管理组织 16.5 数据管理组织与其他组织间关系 16.6 数据管理组织中的角色 16.7 总结 |
第十七章 数字化转型下组织变革管理 | 掌握数字化转型下组织变革管理原则、组织变革管理的八个误区、组织变革管理的八个阶段、组织变革的可持续发展、组织持续获得数据管理价值。 | 17.1 简介 17.2 数字化转型下的组织变革管理原则 17.3 数字化转型下组织变革管理的八个误区 17.4 数字化转型下组织变革管理的八个阶段 17.5 数字化转型下组织变革的可持续发展 17.6 数字化转型下组织持续获得数据管理价值 17.7 数字化转型组织数据管理文化最佳实践 17.8 总结 |
八、 授课专家
商老师 北京工业大学 计算机科学与技术专业硕士,22年IT职业培训生涯,20000+学时授课经历,国内IT培训金牌讲师。拥有CISSP、CISP、ISO27001 Practitioner、PMP、ITIL、CDGA、CCNA、CCNP、MCSE、MCDBA、信息系统项目管理师等国际国内IT领域专业证书。授课过程理论与实践并重,深入浅出,讲课诙谐幽默、气氛活跃,深受广大学员好评。
王老师 (TOGAF9.2 鉴定级、CDMP、PMP、高级信息系统项目管理师、ITIL V3)数据治理及数据标准化专家,信息工程硕士。参与过大量关于数据治理、数据能力成熟度评估、数据架构、企业级数据模型、数据标准化和数据质量提升项目,长期致力于数据治理、数据架构及数据标准化方面的研究和实践
王老师 现任某上市公司软件产品部副总兼大数据产品线总经理,国际信息和数据质量协会(IAIDQ)会员,ITSS数据治理标准工作组成员。曾获得数据管理专业认证(CDMP)、数据治理专业认证(DGP)、信息质量专业认证(IQCP)三项国际认证。2010年加入普元,全面主持普元大数据产品的研发、拓展及团队管理工作。十年大型企业信息化架构设计与建设经验,曾任中国人民银行核心平台架构师。主持参与了国家开发银行大数据治理项目、中国人民银行软件开发平台、国家电网云计算平台等大型项目建设。对大数据行业有着深入的研究和洞察,并对企业信息化平台建设,企业云计算及大数据平台建设有着丰富经验。
考试时间:每年的3月、6月、9月、12月,一般提前2个月注册申请报名。
CDGA/CDGP证书样本
工业和信息化部教育与考试中心职业技术证书样本
CDMP证书样本